Module Details

Module Code: ZCHE C3104
Module Title: Spectrochemical Methods
Title: Spectrochemical Methods
Module Level:: 7
Credits:: 10
Module Coordinator: Paula Rankin
Module Author:: Ariane Perez Gavilan
Domains:  
Module Description: This module further develops the theory and practice of analytical chemistry, with specific reference to the areas of atomic and molecular spectroscopy.
 
Learning Outcomes
On successful completion of this module the learner will be able to:
# Learning Outcome Description
LO1 Describe background chemistry and theory of the principal types of spectroscopy.
LO2 Demonstrate with confidence a wide variety of spectrochemical applications.
LO3 Apply the theoretical principles of atomic and molecular spectroscopy to industrial, pharmaceutical and environmental analysis.
LO4 Employ the development and execution of laboratory assays, according to best practice
Dependencies
Module Recommendations

This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed
Co-requisite Modules
No Co-requisite modules listed
Additional Requisite Information
No Co Requisites listed
 
Indicative Content
Fundamentals
A review of: Interaction of electromagnetic radiation with matter. Absorption, emission. Beer’s Law. Evaluation and interpretation of analytical data, standard operating procedures (SOP), calibration.
Sample pre-treatment
Wet digestion, microwave digestion, and ashing. Safety considerations, estimations. Interferences.
Atomic spectroscopy
A review of electronic transitions. Selection rules for absorption and emission of energy. Flame, non-flame, and electrical methods of atomisation (Graphite furnace, inductively coupled plasma (ICP), vapour method (Hg), hydride (Se,As)). Understanding of interferences due to flame, matrix, and sample components, and compensation for and elimination of interferences will be strengthened through practical work.
Molecular spectroscopy
Understanding of deviations from Beer's Law, solvents, cells, chromophores, electronic transitions (π → π* and n → π*), molar absorptivity (ε) values, effect of conjugation on absorption will be strengthened. Ligand-field, crystal-field and charge-transfer theories. Use of single/multiple standards, multi-component, derivatives. Fluorescence and phosphorescence.
Infrared spectroscopy
Vibrational and rotational transitions.Mid-Infrared, Near Infrared (NIR). Rotor and spring models for spectra of diatomic (HCl) and polyatomic species. 3N-5, 3N-6 formulae, allowed/ forbidden transitions. Identification of compounds using correlation charts, spectral libraries. ATR (attenuated total reflectance). Fourier Transform IR, solvents effects, adjacent groups. Applications: gas monitoring, aqueous solutions, coatings, films.
Nuclear Magnetic Resonance Spectroscopy
Nuclear spin states and magnetic moments, resonance, relaxation, chemical shift, factors affecting chemical shift, shielding. FT spectrometers, FID. First order spectra, spin-spin coupling, multiplicity, chemical equivalence, relationship between spectra and structure for 1H NMR. Outline of 13C NMR, 2D techniques, and multinuclear NMR.
Related matters
Applications to synthetic, kinetic and mechanistic studies. Outline of mass spectroscopy, x-ray fluorescence; hyphenated GC-MS and ICP-MS. Overview of related environmental, medical, biological methods and art conservation. Assay method development. Luminescence in forensic analysis. Fingerprints and identification of bodily fluids.
Practical
Practical work will proceed in parallel with theoretical concepts, building on previous experience. Students will perform practical work to explore sample preparation and resolution of interference effects in Atomic Absorption and Flame Photometry. A systematic approach to uv-visible spectrometric methods will elucidate colour and complex formation; students will learn to determine single and multi-component analytes. Gas, liquid and solid phase sampling methods will be followed by FTIR spectroscopy.
Module Content & Assessment
Assessment Breakdown%
Continuous Assessment30.00%
Practical40.00%
End of Module Formal Examination30.00%

Assessments

Full Time

Continuous Assessment
Assessment Type Case Studies % of Total Mark 30
Timing n/a Learning Outcomes 1,2,3
Non-marked No
Assessment Description
Two continuous assessments throughout year. When possible, one of these will include collaboration with an international partner.
No Project
Practical
Assessment Type Practical/Skills Evaluation % of Total Mark 40
Timing n/a Learning Outcomes 3,4
Non-marked No
Assessment Description
Worksheets and reports;
Practical Log Book
End of Module Formal Examination
Assessment Type Formal Exam % of Total Mark 30
Timing End-of-Semester Learning Outcomes 1,2,3
Non-marked No
Assessment Description
3 hour exam
Reassessment Requirement
Exam Board
It is at the discretion of the Examination Board as to what the qualifying criteria are.

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

 

Module Workload

Workload: Full Time
Workload Type Workload Category Contact Type Workload Description Frequency Average Weekly Learner Workload Hours
Lecture Contact Lecture 12 Weeks per Stage 4.00 48
Laboratory Contact Practical class 12 Weeks per Stage 4.00 48
Estimated Learner Hours Non Contact Independent learning 15 Weeks per Stage 10.27 154
Total Weekly Contact Hours 8.00
 
Module Resources
Recommended Book Resources
  • Daniel C. Harris. (2020), Quantitative Chemical Analysis, 8th. MacMillan, [ISBN: 9781319384913].
  • Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch.. (2013), Fundamentals of analytical chemistry, 9th. Pacific Grove, CA; Brooks/Cole, [ISBN: 9780495558286].
  • Donald L. Pavia,Gary M. Lampman,George S. Kriz,James A. Vyvyan. (2015), Introduction to Spectroscopy, 5th. Cengage Learning, p.784, [ISBN: 9781285460123].
This module does not have any article/paper resources
Other Resources
Discussion Note: